

Approved for public release; further dissemination unlimited

Preprint

Multivariate Clustering of Large-
Scale Scientific Simulation Data

Tina Eliassi-Rad and Terence Critchlow

This article was submitted to
The 3rd IEEE International Conference on Data Mining, Melbourne,
FL, November 19-22, 2003.

June 13, 2003

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

nijhuis2
 UCRL-JC-153698

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Multivariate Clustering of Large-Scale Scientific Simulation Data

Tina Eliassi-Rad Terence Critchlow

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Box 808, L-560, Livermore, CA 94551

{eliassi, critchlow}@llnl.gov

Abstract

Simulations of complex scientific phenomena involve the
execution of massively parallel computer programs. These
simulation programs generate large-scale data sets over
the spatio-temporal space. Modeling such massive data
sets is an essential step in helping scientists discover new
information from their computer simulations. In this
paper, we present a simple but effective multivariate
clustering algorithm for large-scale scientific simulation
data sets. Our algorithm utilizes the cosine similarity
measure to cluster the field variables in a data set. Field
variables include all variables except the spatial (x, y, z)
and temporal (time) variables. The exclusion of the spatial
dimensions is important since “similar” characteristics
could be located (spatially) far from each other. To scale
our multivariate clustering algorithm for large-scale data
sets, we take advantage of the geometrical properties of the
cosine similarity measure. This allows us to reduce the
modeling time from O(n2) to O(n × g(f(u))), where n is the
number of data points, f(u) is a function of the user-defined
clustering threshold, and g(f(u)) is the number of data
points satisfying f(u). We show that on average g(f(u)) is
much less than n. Finally, even though spatial variables do
not play a role in building clusters, it is desirable to
associate each cluster with its correct spatial region. To
achieve this, we present a linking algorithm for connecting
each cluster to the appropriate nodes of the data set’s
topology tree (where the spatial information of the data set
is stored). Our experimental evaluations on two large-
scale simulation data sets illustrate the value of our
multivariate clustering and linking algorithms.

1. Introduction

Scientists are able to simulate complex phenomena by
utilizing massively parallel computer programs. Such
computer programs (a.k.a., simulation codes) produce tera-
scale data sets over the spatio-temporal space. In order to
discover new information from such large-scale data sets,
scientists need efficient and effective modeling techniques
[1, 6, 8, 14]. This paper describes a simple yet effective
multivariate clustering algorithm for large-scale scientific
simulation data in mesh format. Mesh data sets usually

vary with time, consist of multiple dimensions (i.e.,
variables), and contain interconnected grids. Such grids
break the mesh data into zones, in which data points are
stored. The shape of the zones can be regular (e.g.,
rectilinear) or irregular (e.g., arbitrary polygons). Figure 1
depicts part of the mesh produced from an astrophysics
simulation of a star exploding. Musick and Critchlow
provide a nice introduction to scientific mesh data [15].

Figure 1. Part of a Mesh Data Set Representing the
Explosion of a Star

Our multivariate clustering algorithm uses only a data
set’s field variables to find “similar” behavior. Field
variables are all variables except the spatial (x, y, z) and
temporal (time) variables. For example, temperature,
pressure, and density are considered field variables. The
exclusion of the spatial dimensions from the clustering
process is important since “similar” characteristics could be
far from each other in the spatial region (see Figure 2). For
example, the values of the field variables in the outer zones
of a star are homogeneous even though spatially the zones
can be far apart.

To build clusters, we utilize a variant of the cosine
similarity measure, which has been used in information
retrieval applications [17]. We chose the cosine similarity
measure instead of other metrics (such as the Euclidean
distance metric) since our clusters will be used for query
retrieval.

Figure 2. A Mesh Data Set Representing a Star
(Similar Zones Have Similar Colors.)

To scale our multivariate clustering algorithm for large-
scale data sets, we take advantage of the geometrical
properties of the cosine similarity measure. Specifically,
we utilize the user-defined clustering threshold to place a
tighter upper-bound on the similarity of zones. This allows
us to reduce the clustering time from O(n2) to O(n ×
g(f(u))), where n is the number of data points, f(u) is a
function of the user-defined clustering threshold, and g(f(u))
is the number of data points satisfying the new threshold
f(u). We empirically show that on average g(f(u)) is much
less than n. Section 2 describes our multivariate clustering
algorithm in details.

Even though spatial variables do not play a role in
building our clusters, it is desirable to associate each cluster
with its correct spatial region. In particular, it is important
for our clustering model to frame the answers to scientists’
queries in the spatial location of the original data. To
achieve this, we present a linking algorithm for connecting
each cluster to the appropriate nodes of the data set’s
topology tree. Such a tree stores the spatial information of
a data set by utilizing the intrinsic topology of the data
given in the original scientific problem [5]. Our linking
technique is embedded into our clustering algorithm. That
is, connections between a cluster and the correct nodes of
the topology tree are made as the cluster is being
constructed. In this way, we are able to avoid traversing the
clusters after they are made, which in turn reduces our
execution times. The main challenge for our linking
algorithm is to find the best m nodes in the topology tree for
a particular cluster, c, where m is much less then the
number of zones in c. Section 3 presents an in-depth
discussion of our linking algorithm.

In Section 4, we describe our experimental evaluations
on two large-scale (astrophysics) simulation data sets. We
compare our results with a simple modeling technique,
which propagates statistical information of the data up the
topology tree. Our results illustrate the value of our
multivariate clustering and linking algorithms.

Sections 5 and 6 discuss some related and future works,
respectively. Finally, Section 7 provides a summary of our
work.

2. Multivariate Clustering

Our motivation for using a multivariate modeling
algorithm is to capture the interrelationships among a mesh
data set’s field variables in one metric. In this way, we are
able to collectively measure the similarity between zones.
Eliassi-Rad, et al [8] presents our work using univariate
modeling algorithms.

Table 1 describes our multivariate clustering algorithm.
The inputs to our algorithm are (i) the list of zones in the
mesh data set and (ii) a user-defined clustering threshold in
[0,1]. A clustering threshold of 0 indicates complete
dissimilarity between zones. On the other hand, a
clustering threshold of 1 shows total similarity among
zones. The output of our algorithm is a list of clusters,
where each cluster is represented by its (zone) population,
N, and the following four vectors:

2

1



























=

m

�



























=

m

�

2

1

2

1



























=

mmax

max

max

max
�

2

1



























=

mmin

min

min

min
�

→
,

→
,

→
max , and

→
min are the mean, standard deviation,

maximum, and minimum values of the zones represented in
a cluster. The variable m is the number of field variables in
the mesh data set.

Initially, we assume that all zones are available for
clustering (i.e., they are assigned the color GREEN).
Then, as each zone is placed in an appropriate cluster, it
becomes unavailable (i.e., its color changes from GREEN
to RED). Our clustering algorithm iterates over all
GREEN zones. At each iteration, a variant of the cosine
similarity measure [17] is used to find an appropriate
cluster for each GREEN zone.

Table 1. Our Multivariate Clustering Algorithm

Inputs
� List of zones
� User-defined clustering threshold in [0, 1], where 0 and

1 indicate complete dissimilarity and similarity,
respectively.

Output
� A list of clusters

Assumptions
� A zone is either GREEN (i.e., available for clustering)

or RED (i.e., already included in a cluster).
� Initially, the color of all zones, z, is GREEN.

Algorithm
For each zone, z, do
 If (z.color GREEN) then

a) C = new Cluster();
b) Add z to C;
c) C.stats = z.stats;
d) z.color = RED;
e) For each zone, z , do

i) If (z .color GREEN) then
(1) If (CosSim(z, z) ��f(u)) then

(a) Add z to C;
(b) Update C.stats;
(c) z .color = RED;

f) Add C to the list of clusters;

The standard cosine similarity measure between two

vectors
&

 and
&

 is defined as follows:


















=≠≠=

=

≠≠
×

•=

=

)0 & 0(or)0 & 0(if ,0

 if ,1

 0 and 0 if ,),cos(

),(

22

CosSim

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

Since we cluster the zones of a mesh data, we need to
represent each zone as a vector. The vector associated with
each zone contains the mean values of the field data points
in that zone. Our CosSim normalizes the elements of

&

and
&

 such that all the values of field variables are
between 0 and 1. This normalization step is important since
the ranges of values for our field variables differ
considerably.

Traditionally, when),(CosSim
&

&

 � user_threshold is

true,
&

 and
&

are placed into one cluster. Then, a new

vector,
&

, is placed in the same cluster as
&

 and
&

only if
both of the following inequalities are true:

•),(CosSim
&&

 ��user_threshold, and

•),(CosSim
&

&

 ��user_threshold
Since we have a huge number of zones to process,
calculations of all pair-wise CosSim measures can be quite
burdensome. Furthermore, sampling from the mesh data is
not an option since scientists are interested in outliers and
do not tolerate results from sampled data. Therefore, we
tighten the similarity threshold so as to eliminate the need
to compute all the pair-wise comparisons. In particular,
each new GREEN zone is only compared with the first
zone that was added to the cluster. We get our new
threshold by first mapping the user-defined threshold from

[0,1] to [-1,1].1 In particular, we use the following equation
to do this mapping:

new_user_threshold = (2 × user_threshold) – 1
Then, we define our new threshold, f(u), to be:

f(u) = f(new_user_threshold) =
cos(0.5 × (cos-1(new_user_threshold)))

Based on the geometrical properties of the cosine function,
the new_user_threshold is always less than f(u). So, we can
use the following inequality:

new_user_threshold < f(u) � CosSim(z, z)
Moreover, we are guaranteed that any new zone added to a
cluster, C, satisfies the user-defined similarity measure.
Figure 3 pictorially illustrates this fact. Based on the user’ s

threshold, any two vectors
&

 and
&

 are considered similar

if and only if the cosine of the angle between
&

 and
&

 is
greater than or equal to new_user_threshold. In our
clustering algorithm, if the angle between an arbitrary
vector

&

 and any vector in a cluster C, is half the size of

the angle between
&

 and
&

, then
&

 is safely added to the
cluster C (without any additional pair-wise comparisons).

Figure 3. User-Defined Threshold and Our Threshold

The tightening of the similarity threshold helps us in two
ways. First, we do not spend time on pair-wise
comparisons. Second, we do not need to shuffle zones
between clusters since our bound, f(u), eliminates zones that
are on the cluster boundaries. In the best case, our
clustering algorithm runs in O(n) time, where n is the
number of zones in the mesh data sets. In the worst case,
our algorithm runs in O(n2) time. However, on average, our
algorithm runs in O(n × g(f(u))) times, where g(f(u)) is the
number of zones that satisfy the f(u) bound. In our
experimental results reported in Section 4, g(f(u)) is much
less than n.

1 The original user-defined threshold is in [0,1] (and not [-

1,1]) since it is easier for users to think in terms of the
interval [0,1].

Our Threshold =0.5 ×

cos-1(new_user_threshold)

&

&

&

User-Defined Threshold =

cos-1(new_user_threshold)

3. Cluster-Topology Linking

Even though spatial variables do not play a role in
building clusters in our algorithm, it is desirable to
associate each cluster with its correct spatial region. In
particular, it is important for our clustering model to return
answers to scientists’ queries in the spatial region of the
original mesh. Since our mesh data have millions of zones,
it would be very inefficient (and at times impossible) to link
each cluster with all of its zones. Therefore, we present a
linking algorithm for connecting each cluster to a small set
(e.g., 512) of nodes in the data set’ s topology tree. A
topology tree stores the spatial information of a data set by
utilizing the intrinsic topology of the data given in the
original scientific problem [5]. Figure 4 illustrates a
topology tree, where the zones are agglomerated
topologically to create interior cells. Then, the interior
cells are recursively agglomerated based on their topology
until one only one cell (i.e., root cell) remains.

Figure 4. A Topology Tree

Figure 5 shows sample links between the list of clusters
and the topology tree. Our linking technique is embedded
into our clustering algorithm. That is, connections between
a cluster and the correct nodes of the topology tree are
made as the cluster is being constructed. In this way, we
are able to avoid traversing the clusters after they are made,
which in turn reduces our execution times. The main
challenge for our linking algorithm is to find the “ best” k
nodes in the topology tree for a particular cluster, C, where
k (e.g., 512) is much less then the number of zones in C
(e.g., 1,625,000).

Table 2 describes our linking algorithm. When the list
of links for a cluster is full, we traverse the topology and the
list of links to find the lowest level topology node with the
most number of descendents in the list of links. Each link
between a cluster and a tree node has a metric, called
percentage_intersection, which measures the percentage
intersection between the zones in the clusters and the
descendents of a node. For example, if a zone, z, is in
cluster C and the list of links for C has a link connected to

z, then that link’ s percentage_intersection is 100. This
percentage_intersection metric measures the “ quality” of a
link. A threshold can be placed on the
percentage_intersection metric so that the trade-off
between execution time and links to the best-fitting nodes
can be exploited.

Figure 5. Links Between List of Clusters and
Topology Tree

Table 2. Our Linking Algorithm

Input
� links = list of links for cluster, C
� z = zone being added to C

Output
� Update links

Algorithm
If (links is not full) then

• z.percentage_intersection = 100;
• Add z to links;
• Return links;

Else
• For l = 0 (leaf level) to r (root level), do

(1) z.ancestor[l] = z’ s ancestor at l;
(2) If (z.ancestor[l] is in links) then update

z.ancestor[l].percentage_intersection;
(3) Return links;

• new_link = NULL;
• For each link, j, in links, do

(1) best_ancestor[j] = j’ s ancestor with the most
number of descendents in links;

Cluster
A

List of
Clusters Cluster

B
…

Interior
Cells

Zones

Root Cell

…

…

… … …

Link Link

Link

Interior
Cells

Zones

Root Cell

…

…

… … …

(2) If (best_ancestor[j].num_descendents �
MAX_NUM_DESCENDENTS) then

(a) new_link = best_ancestor[j];
(b) break;

• If (new_link NULL) then
(1) new_link = argmaxj∈ links best_ancestor[j];

• Clear all descendents of new_link from links;
• Set new_link.percentage_intersection;
• Add new_link to links;
• Return links;

Our linking algorithm performs quite well. This is due
to the very small number of levels in a topology tree
(usually less than 20) and the small number of links chosen
to connect a cluster to the topology tree (usually less than
1000).

4. Experimental Evaluations

Our experiments describe the performance of our
multivariate clustering algorithm with and without the
linking algorithm on two large-scale simulation data sets.
We also compare these performances to the topology-based
algorithm, where the statistical information of the field
variables is propagated upwards in the tree [5].

4.1 Data Sets

Table 3 describes the two mesh data sets used in our
experiments. Both data sets are a simulation of a star at a
certain stage of its life and represent readings in point
locations of a continuous medium. The data sets are
represented as zones (i.e., small cubes with 8 nodes).
Values of variables are associated either with each node
(called a nodal variable) or with each zone (called a zonal
variable). The White Dwarf data set (see Figure 6) is a
simulation of a star exploding. The Djehuty data set (see
Figure 7) is a simulation of a star at its mid-life.

Table 3. Characteristics of Our Data Sets

Data Set
of

Zones
of

Variables
of

Time Steps

White Dwarf 557,375 20 22

Djehuty 1,625,000 18 16

4.2 Evaluation Metrics

We compare our different algorithms by using the
following evaluation metrics in our experiments:

• Metrics per time step
o Number of clusters created
o Average number of zones in clusters
o Minimum number of zones in clusters
o Maximum number of zones in clusters

o Execution time for building clusters with and
without the linking algorithm

• Maximum level reached when linking clusters to
topology tree

• Minimum percentage_intersection at the
maximum level reached

• Maximum percentage_intersection at the
maximum level reached

Figure 6. The White-Dwarf Data Set

Figure 7. The Djehuty Data Set

4.3 Results

Tables 4 and 5 list the results of our clustering algorithm
without linking and with a user_threshold of 0.95 (in [0,1]).
An intuitive way of thinking about the user_threshold is to
state that the user requires all zones in a cluster to be
(user_threshold × 100) percent similar. So, when
user_threshold is 0.95, the required similarity between
zones in a cluster is 95%. Our threshold tightens this
percentage to 98% similarity between zones in a cluster.
Note the small number of clusters that we are able to build
from hundreds of thousands of zones. It is also interesting
to point out that for the White Dwarf data set when the star
starts exploding at time step = 1, the number of clusters
increases by a factor of 7.5. On the other hand, since a
major event does not occur in the Djehuty data set, there is

no dramatic increase in number of clusters from one time
step to the next. This behavior is also evident in the
minimum, average, and maximum number of zones in
clusters (per time step).

Table 4. Clustering on White Dwarf
(user_thresold = 95% and f(u) = 98.5%)

Time
Step

Execution
Time

Without
Linking

in Seconds

of
Clusters

Made
from

557,375
Zones

Min #
of

Zones
in

Clusters

Avg #
of

Zones
in

Clusters

Max #
of

Zones
in

Clusters

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

86.21
204.79
136.87
179.61
121.79
158.31
146.58
119.34
124.15
129.85
142.95
94.02

131.17
143.77
193.21
150.41
149.58
125.67
140.69
78.48

144.29
154.90

13
98
31
30
32
32
43
41
42
42
47
33
35
32
43
45
41
41
42
34
34
30

8121
1
4
6
9
1
1
5
7
7
3
2
3
4
1
1

40
40
8
3
2

19

42875.0
5687.5

17979.8
18579.2
17418.0
17418.0
12962.2
13594.5
13270.8
13270.8
11859.0
16890.2
15925.0
17418.0
12962.2
12386.1
13594.5
13594.5
13270.8
16393.4
16393.4
18579.2

110250
136682
186088
151369
150325
149505
143488
136427
133933
133219
116237
167776
176328
217124
171179
170608
170230
169933
132618
226312
226523
235491

Tables 6 and 7 list the results of our clustering algorithm
without linking and with a user_thresold of 0.99 (in [0, 1]).
The bound used by our clustering algorithm is 0.995 in [-1,
1] (which is equivalent to 99.75% similarity within each
cluster). Again, there is a dramatic increase (by a factor of
36.75) in the number of cluster made for the White Dwarf
data set from time step = 0 to time step = 1 (because of the
start of explosion in the star). As expected, the execution
times are also longer with the bound of 99.75% similarity as
opposed to a bound of 98.5% similarity.

Table 5. Clustering on Djehuty
(user_thresold = 95% and f(u) = 98.5%)

Time
Step

Execution
Time

Without
Linking

in
Seconds

of
Clusters
Made
from

1,625,000
Zones

Min #
of

Zones
in

Clusters

Avg #
of

Zones
in

Clusters

Max #
of

Zones
in

Clusters

0
1

578.95
562.46

14
16

4
8

116071
101563

387420
379529

2
3
4
5
6
7
8
9

10
11
12
13
14
15

763.35
800.39
692.21
532.98
543.35
542.96
536.54
538.26
529.28
541.39
528.73
527.83
519.78
531.86

27
46
50
49
50
53
50
52
50
48
48
48
48
48

135
96
6

36
12
1

13
4

39
196

1
102
18
3

60185.2
35326.0
32500.0
33163.3
32500.0
30660.4
32500.0
31250.0
32500.0
33854.2
33854.2
33854.2
33854.2
33854.2

383366
385078
378161
413040
420249
421951
423756
424303
423165
420973
419518
416561
414733
412607

Table 6. Clustering on White Dwarf
(user_thresold = 99% and f(u) = 99.75%)

Time
Step

Execution
Time

Without
Linking

in Seconds

of
Clusters

Made
from

557,375
Zones

Min #
of

Zones
in

Clusters

Avg #
of

Zones
in

Clusters

Max #
of

Zones
in

Clusters

0
1
2
3
4
5
6
7
8
9

94.10
1259.80
622.99
361.91
323.89
384.50

1750.70
2830.02
3330.36
4727.93

28
1029
195
201
187
178
232
251
250
262

2801
1
1
1
1
1
1
1
1
1

19906.3
541.7

2858.3
2773.0
2980.6

3131.32
2402.5
2220.6
2229.5

2127.39

58800
88947
66281
49470
48781
45454
68549
44835
43742
43486

Table 7. Clustering on Djehuty

(user_thresold = 99% and f(u) = 99.75%)

Time
Step

Execution
Time

Without
Linking

in
Seconds

of
Clusters

Made
from

1,625,000
Zones

Min #
of

Zones
in

Clusters

Avg #
of

Zones
in

Clusters

Max #
of

Zones
in

Clusters

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

939.44
1148.61
1650.27
2288.11
3382.61
4047.15
3612.45
3924.49
3480.74
3089.25
4928.18
6628.21
7688.57
8484.75
10922.2
11319.7

101
152
288
511
628
633
639
651
657
641
635
620
627
605
597
594

2
4
1
3
1
1
2
1
1
2
2
1
1
2
1
1

16089.1
10690.8
5642.36
3180.04
2587.58
2567.14
2543.04
2496.16
2473.36
2535.10
2559.06
2620.97
2591.71
2685.95
2721.94
2735.69

360000
351174
311071
271924
288192
236610
285632
315302
320345
311419
298567
262135
191985
169082
163168
151338

Tables 8 and 9 show the execution times of our
clustering algorithm with and without linking on the first six
time steps of White Dwarf and Djehuty, respectively. In
addition, they list the best and worst quality of links made
between clusters and the topology tree. As expected, it
takes longer to build clusters and connect them to the
topology tree. However, the most increase is by a factor of
5.6 (see time step = 0 in Table 8). Both the White Dwarf
and the Djehuty topology trees have a maximum of 11
levels. The highest level in the tree reached for a
connection between a cluster and a node is 4 and 5 for
White Dwarf and Djehuty, respectively. This is quite good
since a link accessing a high tree level usually has a worse
fit (i.e., percentage_intersection) as compared to a link
connecting to a lower tree level. Even so, in both data sets,
the maximum percentage_intersection at the highest level is
100% for both data sets. That is, for the Djehuty data set,
there are nodes at level 5 which contain all the zones in a
cluster. The minimum percentage_intersection at the
highest level is 25% and 12.5% for White Dwarf and
Djehuty, respectively. This minimum
percentage_intersection value shows the quality of the
worst links. For example, in the Djehuty data set, there are
nodes at level 5 which contain only 12.5% of the zones in a
cluster.

Table 10 illustrates the execution times of our
multivariate clustering algorithm (without linking). As was
expected, the average value of g(f(u)), which is the number
of zones satisfying our threshold f(u), is much less than n
(the total number of zones). In fact, the average g(f(u)) is in
single digits while the average n is in hundreds of
thousands.

Table 8. Clustering on White Dwarf
(user_thresold = 99% and f(u) = 99.75%)

Time
Step

Execution Time
Without Linking

in Seconds

Execution Time With
Linking in Seconds

0
1
2
3
4
5

94.10
1259.80
622.99
361.91
323.89
384.50

867.24
1489.42
763.51
712.41
672.48
753.06

Max Level
Reached in

Topology Tree

Max Level
Reached with

Linking

Min and Max %
intersection at

Max Level

11 4
Min = 25% and

Max = 100%

Table 9. Clustering on Djehuty
(user_thresold = 99% and f(u) = 99.75%)

Time
Step

Execution Time
Without Linking

in Seconds

Execution Time With
Linking in Seconds

0
1
2
3
4
5

939.44
1148.61
1650.27
2288.11
3382.61
4047.15

2467.04
2569.44
2926.92
3524.46
4828.16
5597.04

Max Level in
Topology Tree

Max Level
Reached with

Linking

Min and Max %
intersection at

Max Level
11 5 Min = 12.5% and

Max = 100%

Table 10. Execution Times for Our Multivariate
Clustering Algorithm (without Linking)

and Average Value for g(f(u))

Data Set
User

Threshold

Avg
O(n)

in
Seconds

Avg
O(n × g(f(u)))

in Seconds

Avg
g(f(u))

White
Dwarf

95% 232.32 732.09 3.15

White
Dwarf

99% 281.33 2179.6 7.75

Djehuty 95% 351.22 1249.6 3.56

Djehuty 99% 763.91 1587.1 2.08

Tables 11 and 12 compare our clustering algorithm with
linking to the topology-based agglomeration algorithm
(which produces the topology tree). The number of nodes
made by the topology-based agglomeration algorithm (in
one level) is much larger than the number of clusters made
by our clustering algorithm. This is mostly due to the
design of the topology-based agglomeration algorithm,
which combines no more than eight zones at a time. This
strategy of agglomerating only small number of zones based
solely on their topology also makes the topology-based
agglomeration algorithm run faster than our clustering
algorithm. In short, Tables 11 and 12 show how well our
clustering algorithm is able to agglomerate “ similar” zones.

Table 11. White Dwarf Data Set: Comparison of Our
Multivariate Clustering Algorithm (with Linking)

Versus the Topology-Based Agglomeration

Data Set = White Dwarf
Time Step = 0

User Threshold = 99%

Execution Time
in Seconds

Number of
Agglomerations

Made from
557,375 Zones

Topology-Based
Agglomeration Algorithm

753.44 73924

Multivariate Clustering
with Linking

867.24 28

Table 12. Djehuty Data Set: Comparison of Our

Multivariate Clustering Algorithm (with Linking)
Versus the Topology-Based Agglomeration

Data Set = Djehuty
Time Step = 0

User Threshold = 99%

Execution Time
in Seconds

Number of
Agglomerations

Made from
1,625,000

Zones
Topology-Based

Agglomeration Algorithm
946.57 203125

Multivariate Clustering
with Linking

2467.04 101

5. Related Work

Clustering algorithm such as BIRCH [20],
CHAMELEON [13], CLARANS [16], CLIQUE [3], CURE
[11], and DBSCAN [9] cannot be either used or scaled to
our data sets for one or more of the following reasons:

1. Our modeling techniques cannot require sampling.
Scientists already sample the data produced by their
simulation programs. They do not accept models
that sample the sampled data, particularly since they
are mostly interested in outliers.

2. We can not build clusters from zones in a subspace
of the data since global properties are important.

3. It is not desirable to use binning or histograms
techniques since we are not supposed to assume an a
priori distribution on the data. Moreover,
histograms are computationally expensive on high-
dimensional data sets.

Our work is similar to Freitag and Loy [10]. Their
system builds distributed octrees from large scientific data
sets. They, however, reduce their data by constraining the
points to their spatial locations.

STING [19] is also similar to our work except that it
assumes that the distribution of the data is known. Also, it
has been tested only on small data sets containing only tens
of thousands of data points. DuMouchel, et al [7] present a
method for compressing flat files; however, they use
binning techniques to “ squash” files, which impose an a

priori distribution on the data Finally, AQUA [2] uses
cached summary data in an OLAP domain. They also use
sampling and histogram techniques, which are not
acceptable in our models.

6. Current and Future Work

We are extending our algorithm to capture “ similar”
behavior across time steps. In particular, we would like to
build a cluster hierarchy from the clusters made at each
time step. We conjecture that such hierarchies will speed-
up response times for queries on both the clusters and the
topology tree since the cluster hierarchy will be shallow
with manageable number of links to the topology tree.
Moreover, we plan to develop tools, which track a
particular zone across time steps. Such tools will not only
help scientists’ in their queries but also will provide us with
insight into our clustering algorithm.

We are examining other measures of interest to see how
they compare to the normalized cosine similarity measure
[12, 18]. In addition, we are looking into ways in which the
inputted list of zones is efficiently perturbed before each
clustering step. Finally, we are investigating other
modeling techniques for large-scale simulation data sets [4].
Specifically, we are interested in models that (i) require
only one sweep of data, (ii) are good at finding outliers, (iii)
can be easily parallelized, and (iv) can efficiently answer a
wide variety of queries.

7. Conclusion

Massively parallel computer programs (which simulate
complex scientific phenomena) generate large-scale data
sets over the spatio-temporal space. Modeling such
massive data sets is an essential step in helping scientists
discover new information from these computer simulations.
We present a simple but effective multivariate clustering
algorithm for large-scale scientific simulation data sets.
Our algorithm utilizes the cosine similarity measure to
cluster the field variables in a data set. The exclusion of the
spatial location is important since “ similar” characteristics
could be located (spatially) far from each other. To scale
our multivariate clustering algorithm for large-scale data
sets, we take advantage of the geometrical properties of the
cosine similarity measure. This allows us to reduce the
modeling time from O(n2) to O(n × g(f(u))), where n is the
number of data points, f(u) is a function of the user-defined
clustering threshold, and g(f(u)) is the number of data
points satisfying the threshold f(u). We show that on
average g(f(u)) is much less than n. Finally, even though
spatial variables do not play a role in building a cluster, it is
desirable to associate each cluster with its correct spatial
location. To achieve this, we present a linking algorithm
for connecting each cluster to the appropriate nodes of the
data set’ s topology tree. Our experimental evaluations on

two large-scale astro-physics simulation data sets illustrate
the value of our multivariate clustering and linking
algorithms.

8. Acknowledgments

This work was performed under the auspices of the U.S.
Department of Energy by the University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.1. UCRL-JC-151860-REV-1. Our
thanks to Ghaleb Abdulla, Bill Arrighi, Chuck Baldwin,
Kevin Durrenberger, Nu Ai Tang, and Megan Thomas for
their assistance.

9. References

[1] Abdulla, G., Baldwin, C., Critchlow, T., Kamimura, R.,
Lozares, I., Musick, R., Tang, N.A., Lee, B., and
Snapp, R. Approximate ad-hoc query engine for
simulation data, In Proceedings of JCDL 2001
(Roanoke VA, June 2001), ACM Press, 255-256.

[2] Acharya, S., Gibbsons, P.B., Poosala, V., and
Ramaswamy, S. The Aqua approximate query
answering system, In Proceedings of the 1999 ACM
SIGMOD, ACM Press, 574-576.

[3] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.,
Automatic subspace clustering of high dimensional
data for data mining applications, In Proceedings of
SIDMOD 1998 (June 1998), ACM Press, 94-105.

[4] Baldwin, C., Abdulla, G., and Critchlow, T. Multi-
Resolution Modeling of Large Scale Scientific
Simulation Data, LLNL Technical Report, UCRL-JC-
147225, 2003.

[5] Baldwin, C., Eliassi-Rad, T., Adbulla, G., and
Critchlow, T., The evolution of a hierarchical
partitioning algorithm for large-scale scientific data:
three steps of increasing complexity, In Proceedings of
SSDBM 2003 (July 2003).

[6] Chakrabarti, K., Garofalakis, M., Rastogi, R., and
Shim, K. Approximate query processing using
wavelets, In Proceedings of VLDB 2000 (Cairo Egypt,
September 2000), ACM Press, 111-122.

[7] DuMouchel, W., Volinsky, CH., Johnson, T., Cortes,
C., and Pregibon, D., Squashing flat files flatter, In
KDD 1999 (San Diego CA), ACM Press, 6-15

[8] Eliassi-Rad, T., Critchlow, T., and Abdulla, G.,
Statistical modeling of large-scale simulation data, In
Proceedings of ACM SIGKDD 2002 (Edmonton
Canada, July 2002), ACM Press, 488-494.

[9] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X., A
density-based algorithm for discovering clusters in
large spatial databases with noise, In Proceedings of
KDD 1996 (Portland OR, August 1996), 226-231.

[10] Freitag, L.A., and Loy, R.M. Adaptive, multi-
resolution visualization of large data sets using a
distributed memory octree, In Proceedings of SC 1999
(Portland OR, November 1999), ACM Press, Article
60.

[11] Guha, S., Rastogi, R., Shim, K., Cure: An efficient
clustering algorithm for large databases, In
Proceedings of SIGMOD 1998 (Seattle WA), ACM
Press, 73-84.

[12] Hilderman, R.J., and Hamilton, H.J., Knowledge
Discovery and Measures of Interest, Kluwer Academic
Publishers, Boston, MA, 2001.

[13] Karypis, G., Han, E.-H., Kumar, V., Chameleon:
Hierarchical clustering using dynamic modeling, IEEE
Computer (August 1999), 68-75.

[14] Lee, B., Critchlow, T., Abdulla, G., Baldwin, C.,
Kamimura, R., Musick, R., Snapp, R., and Tang, N.A.,
The framework for approximate queries on simulation
data, International Journal of Information Sciences,
Elsevier Sciences, forthcoming.

[15] Musick, R., and Critchlow, T. Practical lessons in
supporting large-scale computational science, In
Proceedings of SIGMOD Record 1999, ACM Press,
28(4):49-57.

[16] Ng, R.T., and Han, J., Efficient and effective clustering
methods for spatial data mining, In Proceedings of
VLDB 1994 (Santiago Chile, September 1994),
Morgan Kaufmann Publisher, 144-155.

[17] Van Rijsbergen, C.J., Information Retrieval, 2nd
edition, Butterworths, London, UK, 1979.

[18] Wang, J., Wang, X., Lin, K.-I., Shasha, D., Shapiro,
B.A., Zhang, K., Evaluating a class of distance-
mapping algorithms for data mining and clustering, In
Proceedings of KDD 1999 (San Diego CA), ACM
Press, 307-311.

[19] Wang, W., Yang, J., and Muntz, R. STING: A
statistical information grid approach to spatial data
mining, In Proceedings of VLDB 1997 (Athens Greece,
August 1997), Morgan Kaufmann Publishers, 186-195.

[20] Zhang, T., Ramakrishnan, R., and Livny, M., BIRCH:
An efficient data clustering method for very large
databases, In Proceedings of SIGMOD 1996 (June
1996), ACM Press, 103-114.

